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Abstract

Several designs of micro-fabricated PCR-chips made in silicon have been developed. Upon miniaturization the surface-to-volume ratio
(SVR) increases and therefore, effects related to the non-specific adsorption ofTaqDNA polymerase and template DNA to chip-surfaces
become significant.

To repress the surface-mediated inhibition of these biological macro-molecules: (1) the PCR-compatibility of SiOx-surfaces, (2)
the combination of silanization and dynamic coating with BSA on SiOx-surfaces on the PCR-efficiency, and (3) the stability of these
surface-passivating films during PCR were investigated off-chip. (4) Finally, on-chip PCR-experiments were carried out under optimized
reaction conditions.

(CH3)3SiCl, (CH2)2SiCl2, [(CH3)3Si2]NH and CH3(CH2)2SiCl3 were used to passivate SiOx-surfaces. The PCR was performed accord-
ing to published procedures and the yield of the PCR-products was determined by gel electrophoresis analysis. To follow the degradation of
the surface-passivating films contact angles were measured. It could be demonstrated that: (1) SiOx-surfaces were an inhibitor of the PCR;
(2) the PCR-efficiency of silanized SiOx-surfaces was in the order: CH3(CH2)2SiCl3 ≈ (CH3)2SiCl2 > CH3SiCl3 > [(CH3)3Si2]NH
and the amount of PCR-products was reduced from run to run; (3) the stability of the surface-passivating films resembled the same trend
and none of these surfaces were stable for more than three consecutive PCR runs; (4) the specificity and product yield of the on-chip PCR
was found to be equivalent to a conventional one, using a (CH3)2SiCl2-modified PCR-chip with a power consumption of 2.7 W, heating
(cooling) rates of up to 50 K s−1 (4) and reaction volumes in the range of 1–4�l.

Based on this test configuration the silanization of SiOx-surfaces alone will not be suited for multiple or long-term applications due to
the degradation of the surface-passivating films.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The invention of the PCR had a major impact in molecular
biology [1]. The PCR is an enzyme-catalyzed, temperature-
controlled reaction, which amplifies minute traces of tem-
plate DNA to detectable levels, and as such the use of the
PCR within the context of sample pre-treatment is obvious
[2].

The mechanistic simplicity of the PCR-process—repeated
cycling between three different reaction temperatures—made
it an ideal candidate for miniaturization during the last
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decade[3]. The potential merits of miniaturized PCR-chip
devices compared with conventional thermocyclers are low
power consumption, fast reaction time and reduced amount
of sample and reagent.

Another important issue upon miniaturization is the dom-
ination of surface-related effects, especially the non-specific
adsorption of biological macro-molecules likeTaq DNA
polymerase and template DNA to glass-, polymer-, native
silicon-, SiOx- and silicon nitride-surfaces, because of an
increasing SVR.

In order to perform the PCR in a micro-environment
special attention must therefore be paid to the condition
of the internal surfaces, which are contacted with the
PCR-reaction mixture. For this purpose mere dynamic coat-
ing of the corresponding surfaces with BSA, salmon sperm,
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glycerol, Tween® 20, etc. as PCR-buffer ingredients (cova-
lent) modification with organic mono- and/or multi-layers or
a combination thereof is utilized[4]. However, although the
surface-treatment is key to an effective PCR, the amplifica-
tion yields of chip-based PCR were often inconsistent and
not always comparable with those of a conventional PCR.

Herein: (1) the PCR-compatibility of SiOx-surfaces, (2)
the combination of silanization and dynamic coating with
BSA on SiOx-surfaces on the PCR-efficiency, and (3) the
stability of these surface-passivating films during PCR were
investigated off-chip. (4) Finally, on-chip PCR-experiments
were carried out under optimized reaction conditions.

2. Experimental

2.1. Materials

All chemicals (supplier) had reagent grade or better and
were used without further purification. If not stated other-
wise all chemicals were purchased from Merck. For aqueous
solutions de-ionized water was purified by ultra-filtration
(Millipore). Substrate surfaces were dried using a stream
of compressed air or nitrogen. For silanization reactions
toluene was distilled over sodium. Following silanes
were used{formula}: chlorotrimethylsilane{(CH3)3SiCl}
(Sigma), dichlorodimethylsilane{(CH3)2SiCl2} (Pharmacia
Biotech), hexamethyldisilazane{[(CH3)3Si2]NH} (Roth),
and trichloropropylsilane{CH3(CH2)2SiCl3} (Aldrich).

2.2. Equipment

For comparison off-chip PCR-reactions were carried
out using a Mastercycler® gradient-thermocycler (Eppen-
dorf) equipped with 200�l polypropylene tubes (Roth).
Detailed specifications of the PCR-chips used for the
following experiments are given elsewhere[5]. For con-
ventional PCR-reactions (testing the long-term stabil-
ity of the surface coatings) reaction volumes of 25�l
(200) were used. Electrophoresis was performed in an
EasyCastTM-electrophoresis system (Biometra). The corre-
sponding product bands were recorded using an E.A.S.Y.-gel
documentation system (Herolab). Contact angle measure-
ments were carried out with an OCA 20-contact angle meter
(dataphysics).

3. Methods

3.1. Surface modification

First, a native 2 in. silicon〈1 0 0〉-wafer (VEB Spuren-
metalle Freiberg) was cut into pieces of 0.5 mm× 0.5 mm,
chemically activated in a 3:1 (v:v) mixture of sulfuric acid
and 30% hydrogen peroxide for 1 h, vigorously washed with
copious amounts of water and blown dry with nitrogen.
The substrates were then immersed into a 10 mM solu-

tion of (CH3)3SiCl, [(CH3)3Si2]NH, or CH3(CH2)2SiCl3
in toluene at room temperature for 3 h, rinsed succes-
sively with toluene, ethanol, acetone and water, blown
dry with nitrogen, and finally dried at 100◦C for 1 h. The
silanization with (CH3)2SiCl2 followed the manufacturer’s
guideline. Substrates prepared according to this proce-
dure showed the following contact angles with water:
(CH3)3SiCl 80◦, (CH3)2SiCl2 98◦, [(CH3)3Si2]NH 48◦,
and CH3(CH2)2SiCl3 87◦. Furthermore, to simulate a high
SVR, silicon powder was modified the same way as out-
lined above. Both the PCR-compatibility of different surface
coatings and their long-term stability were first investigated
off-chip in the conventional thermocycler, thereby soaking
one piece of silanized silicon or 5, 10, 15 and 20 mg of
silanized silicon powder in the PCR-reaction mixture and
PCR-buffer, respectively. Between consecutive experiments
the silanized substrates were rinsed with water and blown
dry with nitrogen. Immediately thereafter, the correspond-
ing contact angles were determined.

3.2. PCR-protocol

For all PCR-reactions aTaq PCR Core Kit (Qiagen)
was used. The template was a mutant of a gene encoding
for glutaraldehyde-3-phosphate-dehydrogenase (GAPDH)
and the length of the amplicon was 379 bp. The primer
sequences (MWG Biotech) used were: primer GAPDH
A1 (5′-CCAGTGAGCTTCCCGTTCAGC-3′) and primer
GAPDH SO (5′-CCCATCACCATCTTCCAGGAGC-3′)
[6]. The PCR-reaction mixture consisted of: 27�l of water,
10�l of Q-solution, 5�l of 5× Qiagen PCR-buffer, 5�l of
1.5�M BSA, 1�l of 10 mM dNTPs, 0.5�l of 100�M of
GAPDH A1 and GAPDH SO, 0.5�l of <0.5�g/�l template
DNA and 0.5�l of 5 U/�l TaqDNA polymerase resulting in
a total volume of 50�l. For on-chip PCR-reactions 1–4�l
of this PCR-reaction mixture was used. Both the on- and
off-chip PCR-reactions were run in parallel using aliquots
of the same reaction mixture under identical reaction con-
ditions. The reaction mixture was initially heated to 94◦C
for 180 s and then amplified for 25 cycles: 94◦C for 20 s,
50◦C for 20 s and 68◦C for 40 s. A final extension was
added at 68◦C for 180 s. After completion of the reaction
the PCR-products were analyzed by gel electrophoresis. For
slab gel electrophoresis a 3% agarose gel was prepared in
1× TAE buffer, pH 8.0, which was pre-stained with 1.25�M
ethidium bromide (Sigma)[7]. ØX174 RT DNA Hinc II
(Advanced Biotechnologies) was used as size marker. The
electrophoresis was performed at 110 V for 30 min.

4. Results and discussion

4.1. PCR-compatibility of silicon

Due to its superior thermal properties and outstanding
position in micro-machining technologies silicon, besides
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Fig. 1. (a) and (b) Front- and back-side view of a stationary-working, chamber-type chip-thermocycler. The reaction chamber is thermally isolated from
the surrounding by incorporation of thermal gaps. The thermal management of the chip is accomplished by platinum-thin film transducers, whereby the
periphery is contacted via aluminum-pads.

glass, is the material of choice for the construction of
chip-based thermocyclers.

Upon miniaturization, the SVR increases: dependent
from the reaction volume, 200�l polypropylene PCR-tubes
(PCR-chips used in this study) have a SVR in the range
of 1–2 mm−1 (5–10) (Fig. 1a and b). Therefore, the
non-specific adsorption and thus the potential inactivation
of components of the PCR-reaction mixture, especially
Taq DNA polymerase and DNA template, becomes a crit-
ical issue. Initial tests using SiOx-piece as component of
the PCR-reaction mixture revealed that there was some
degree of inhibition of the PCR (Fig. 2a). This effect be-
came more pronounced, if SiOx-powder with its inherent
large surface area was used instead: the higher the amount
of SiOx-powder added, the lower was the yield of the
PCR-products (Fig. 2b).

This inhibition effect of SiOx-surfaces was consistent with
previous findings[8]. However, the addition of BSA in the
PCR-reaction buffer was essential to get reliable results on
bare silicon, whereby its concentration is dependent on the

Fig. 2. (a) Gel electrophoresis analysis of PCR-products: inhibition effect caused by the addition of a 0.5 mm× 0.5 mm SiOx-piece. Lane 1, marker; lane
2, reference control without SiOx-piece; lane 3, addition of one SiOx-piece. (b) Gel electrophoresis analysis of PCR-products: inhibition effect caused
by the addition of SiOx-powder. Lane 1, marker; lane 2, reference control without SiOx-powder; lanes 3, 4, 5 and 6, addition of 5, 10, 15 and 20 mg of
SiOx-powder, respectively.

history of the silicon used, i.e., pre-treatment, source, impu-
rities, etc. (data not shown).

4.2. Effect of silanization

Apart from higher concentrations ofTaqDNA polymerase
or template DNA in the PCR-reaction buffer, mere dynamic
coating of the SiOx-surface with PCR-buffer ingredients like
BSA, salmon sperm, glycerol, etc., covalent modification
with organic mono- or multi-layers was exploited to render
the SiOx-surfaces more PCR-compatible[4].

For this purpose SiOx-surfaces were modified with
silanes of the general formula RnSiCl4−n, whereby
the silanes differed with respect to their number of
chlorine-substituents. Experiments performed with silanized
SiOx-pieces as component of the PCR-reaction mixture
showed a marked difference: the amount of PCR-products
decreased with decreasing number of chlorine-substituents
(Fig. 3). This trend was also observed in the case of
silanized SiOx-powder (data not shown). But, in all cases
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Fig. 3. Gel electrophoresis analysis of PCR-products: dependence on
the PCR-efficiency by silanization of SiOx-surfaces. Lane 1, marker;
lane 2, reference control without SiOx-piece; lane 3, SiOx-piece without
modification; lane 4, 5, 6 and 7, SiOx-piece modified with [(CH3)3Si2]NH,
(CH3)2SiCl2, (CH3)3SiCl and CH3(CH2)2SiCl3, respectively.

the amount of PCR-products was reduced from run to
run without regeneration of the surface-passivating films.
Normally, silanization of SiOx-surfaces was effective
for a maximum of three consecutive PCR runs. These
findings correlated with tests regarding the stability of
the surface-passivating films, which was also in the or-
der: CH3(CH2)2SiCl3 ≈ (CH3)2SiCl2 > CH3SiCl3 >

[(CH3)3Si2]NH. A speculation for this trend will be given
in the next session.

4.3. Stability of the surface-passivating films

Modification of a hydrophilic SiOx-surface with short-
chain, aliphatic silanes generates a hydrophobic surface,
whereby a covalent silyl-ether bond is formed. It is also
known that the silyl-ether bond is base-labile[9], i.e., it is
cleaved at elevated pH values, which will then again re-
sult in a hydrophilic surface. Therefore, contact angle mea-
surements provide a good means to gain information about
the current state of the surface during the course of the
PCR.

To rule out effects correlated with the non-specific adsorp-
tion of ingredients of the PCR-reaction buffer, especially
BSA, TaqDNA polymerase and template DNA, which also
renders the silanized surface hydrophilic, experiments with
silanized SiOx-pieces were conducted with PCR-buffer and
water. By increasing cycling times the contact angles of the
surface-passivating films decreased with different rates in
PCR-buffer, whereas in the water they remained unchanged
(Fig. 4a and b).

Taking into account a pH value of up to 9.3 and an over-
pressure of up to 1 bar during denaturation[10], a decreasing
contact angle with water means a forthcoming degradation
of the silanized surface by hydrolysis of the silyl-ether
bond. Thereby, the enhanced stability of (CH3)2SiCl2-
and CH3(CH2)2SiCl3-modified silicon-surfaces towards
wet-chemical etching was attributed to the formation of

Fig. 4. (a) Contact angle of water at SiOx-pieces modified with different
silanes in dependence on the cycling time. (b) Contact angle of water
at SiOx-pieces modified with (CH3)2SiCl2 in water and PCR-buffer in
dependence on the cycling time.

multi-layers by cross polymerization of the additional
chlorine-substituents.

4.4. On-chip PCR

In contrast to conventional PCR miniaturized PCR ben-
efits from lower power consumption, a reduced amount of
sample and reagents and shorter reaction times. Typically,
the PCR-chip (conventional thermocycler) used herein had a
power consumption of 2.7 W (1500), the PCR-reaction vol-
ume was 1–4�l (25) and the total reaction time was 44 min
(73), thereby achieving experimental heating and cooling
rates of up to 50 (3) and 4 K s−1 (1), respectively (Figs. 1
and 5a).

On-chip experiments using the optimized reaction condi-
tions obtained so far demonstrated that the specificity and
product yield was equivalent to those run in conventional
polypropylene tubes (Fig. 5b). Similar to the results out-
lined above appropriate surface passivation and PCR mix-
ture composition turned out to be the most critical factors
for a successful on-chip PCR. However, to get reproducible
results with this set-up the chip-surface had to be regener-
ated after every PCR run.
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Fig. 5. (a) Heating and cooling rates of the chip-thermocycler used in a typical PCR-experiment. (b) Gel electrophoresis analysis of PCR-products:
comparison of the specificity and product yield of the PCR in the conventional and chip-based thermocycler. Lane 1, marker; lane 2, conventional
thermocycler; lane 3, PCR-chip.

5. Conclusions

(1) SiOx-surfaces as component of the PCR-reaction mix-
ture caused a distinct inhibition effect on the yield of the
PCR, which could be quantified using different amounts
of SiOx-powder.

(2) Alkyl-terminated SiOx-surfaces as component of the
PCR-reaction mixture showed two tendencies: firstly,
the amount of PCR-product decreased in the order of
CH3(CH2)2SiCl3 ∼= (CH3)2SiCl2 > (CH3)3SiCl >

[(CH3)3Si2]NH and secondly, in all cases the amount of
PCR-product was reduced from run to run. The silaniza-
tion of the SiOx-surfaces was effective for a maximum
of three consecutive PCR runs only.

(3) These findings resembled tests regarding the stability
of the surface-passivating films, which was in the same
order. Base- and pressure-mediated hydrolysis of the
silyl-ether bond seemed to be responsible for the in-
creasing degradation of the silanized SiOx-surfaces.

(4) Experiments using a (CH3)2SiCl2-modified PCR-chip
in combination with dynamic coating with BSA demon-
strated that the specificity and product yield of the PCR
was equivalent compared to a conventional one. The re-
action volume for this chip-based approach was 1–4�l,
whereby heating (cooling) rates of up to 50 K s−1 (4)
and a power consumption of 2.7 W were realized.

However, with this set-up the chip-surface had to be
regenerated after every PCR run to get reproducible
results.
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